Estimating the benefit of green infrastructure to urban ecosystems: A synthesis and case-study



Alessandro Filazzola

Scott MacIvor - UTSC

Namrata Shrestha - TRCA

Glenn Milner - OCC

library(tidyverse)
library(PRISMAstatement)

Global urbanization continues unabated, with more than 50% of the worlds’ population living in cities. Cities are conventionally viewed as a threat to local biodiversity because natural habitat is replaced with development. However, more recently, there is greater acknowledgement from the public and private sectors that supporting local environments sustains critical ecosystem services, which in turn improves human health and biodiversity conservation. Consequently, urban planning and design has shifted towards green infrastructure (GI), such as green roofs and retention ponds, to increase connections between city and nature in an era of climate change. The contribution of GI to some ecosystem services has been proven (e.g. stormwater management, building cooling), but the contribution to biodiversity conservation remains unspecified. Using a systematic literature review, this project will (i) determine effect estimates that relate different GI types and characteristics to the impacts on natural systems, and (ii) compile relevant data to develop different implementation scenarios GI for Toronto and region. This study will inform natural system planning and improve quantification of GI on urban ecosystems. Findings from this research will have global ramifications that allow city planners to optimize GI implementation for sustainable development and decrease the impacts of cities on natural systems.

Objectives

  1. A meta-analysis of the literature summarizing the effect of green infrastructure on natural systems.
  2. Using Toronto, Ontario as a case study, develop a tool that can communicates the effectiveness of different GI implementation for biodiversity conservation.

Expected Deliverables

  1. A peer-reviewed journal article that is a meta-analysis from objective 1.
  2. A tool or data analysis that projects different scenarios of green infrastructure implementation for the City of Toronto.

Timeline

date task
June 18 Begin meeting with staff and MacIvor lab to set out workplan
June 25 Begin literature review and data extraction
July 2 Aggregate available data for GI analysis in Toronto
July 3 Complete meetings with TRCA staff on relevant considerations for the project
July 9 Determine important parameters for modelling GI in Toronto
August 20 Complete collection and review of relevant articles
September 3 Conduct meta-analysis on available data
September 10 Propose candidate models for quantifying GI effects for natural systems
Sept 24 Model validation and begin writting manuscript
Oct 15 Complete a draft of manuscript and finalize model

Revise list

search1.1 <- read.csv("data/WOS-lit.csv")
search1.2 <- read.csv("data/WoSPart3-July_4_2018.csv")
net.difference <- anti_join(search1.2, search1.1, by = "DOI")
net.difference <- net.difference %>% select(Title, DOI) #to simplify for a look
nrow(net.difference) #count of number of differences from consecutive search
## [1] 182
## 182 papers to be added by including revised terms
## Select those articles and join with other dataset
net.difference <- anti_join(search1.2, search1.1, by = "DOI")

updated.search <- rbind(search1.1, net.difference)

#write.csv(updated.search, "data/WOS-lit.updated.csv")

Adding revised terms from July 3rd meeting added 182 papers Total articles returned = 1,053 (as of July 2018)

## Adding terms for naturalized pond and pollinator garden
search1.2 <- read.csv("data/WOS-lit.updated.csv")
search1.3 <- read.csv("data/WoSPart4-July_11_2018.csv")
net.difference <- anti_join(search1.3, search1.2, by = "DOI")
net.difference <- net.difference %>% select(Title, DOI) #to simplify for a look
nrow(net.difference) #count of number of differences from consecutive search
## [1] 0
## 213 papers to be added by including revised terms
## Select those articles and join with other dataset
net.difference <- anti_join(search1.3, search1.2, by = "DOI")

updated.search <- rbind(search1.2, net.difference)

#write.csv(updated.search, "data/WOS-lit.updated.csv")

Adding revised terms from July 3rd meeting added 213 papers Total articles returned = 1,224 (as of July 2018)

Reviewers comments to add papers

search1.4 <- read.csv("data/WOS-lit.updated.csv")
reviewer <- read.csv("data//reviewer.updated2019.csv")

net.difference <- anti_join( reviewer, search1.4, by = "DOI")
## Warning: Column `DOI` joining factors with different levels, coercing to
## character vector
net.difference <- net.difference %>% select(Title, DOI) #to simplify for a look
nrow(net.difference) #count of number of differences from consecutive search
## [1] 579
str(net.difference)
## 'data.frame':    579 obs. of  2 variables:
##  $ Title: Factor w/ 720 levels "A Comparative Approach to Artificial and Natural Green Walls According to Ecological Sustainability",..: 446 437 372 474 429 262 203 697 448 153 ...
##  $ DOI  : Factor w/ 720 levels "","10.1002/(SICI)1099-1085(20000415)14:5<867::AID-HYP975>3.0.CO;2-5",..: 618 407 620 458 404 545 2 406 164 588 ...
write.csv(net.difference, "new.papers.csv", row.names=FALSE)

Literature Review - 2. Sort

This steps includes a. checking for duplicating, b. reviewing each instance for relevancy, c. consistently identifying and documenting exclusion criteria. Outcomes include a list of publications to be used for synthesis, a library of pdfs, and a PRISMA report to ensure the worflow is transparent and reproducible. Papers were excluded with the following characteristics:

  • Not emperical study (e.g. review, book chapter)
  • Irrelevant categories (e.g. political science, law, sports tourism, art)
evidence <- read.csv("data/evidence.updated.csv")
### Identify studies that were excluded
excludes <- evidence %>% group_by(reason) %>% count(exclude) %>% filter(reason!="")
ggplot(excludes, aes(x=reason, y=n)) + geom_bar(stat="identity") + coord_flip()

### Proportion excluded
excludes %>% mutate(percent=n/1140*100) %>%  data.frame(.)
##                             reason exclude   n    percent
## 1      city or greenspace planning       y 136 11.9298246
## 2                civil engineering       y  69  6.0526316
## 3               climate adaptation       y  38  3.3333333
## 4             conceptual framework       y  55  4.8245614
## 5                    ecology study       n   1  0.0877193
## 6                    ecology study       y 246 21.5789474
## 7                        economics       y  32  2.8070175
## 8                           energy       y   6  0.5263158
## 9        food security/agriculture       n   1  0.0877193
## 10       food security/agriculture       y  64  5.6140351
## 11                   GI technology       n   1  0.0877193
## 12                   GI technology       y 135 11.8421053
## 13              industrial ecology       y  24  2.1052632
## 14                         methods       y   1  0.0877193
## 15                       modelling       y  79  6.9298246
## 16                   no comparison       y  10  0.8771930
## 17                          policy       y  63  5.5263158
## 18   regulatory/ecosystem services       y 393 34.4736842
## 19                          review       n   1  0.0877193
## 20                          review       y 105  9.2105263
## 21     social impacts/human health       y 115 10.0877193
## 22 urban ecology/human disturbance       y 112  9.8245614
## frequency of study
year.rate <- evidence %>% group_by(Year) %>% summarize(n=length(Year))

ggplot(tail(year.rate,20)) + geom_bar(aes(x=Year, y=n), stat="identity") + ylab("number of published studies") +xlab("year published") +theme(text = element_text(size=16))

Papers processed - Progress

## Completed so far
prog <- sum(evidence$exclude!="")
prog
## [1] 1845
## Remaining
total <- nrow(evidence)
total
## [1] 1845
setTxtProgressBar(txtProgressBar(0,total,  style = 3), prog)
## 
  |                                                                       
  |                                                                 |   0%
  |                                                                       
  |=================================================================| 100%

Initial pass for relevant papers complete.

Description of studies

GI.type <- evidence %>% group_by(GI.type) %>% count(exclude) %>% filter(GI.type!="")
ggplot(GI.type, aes(x=GI.type, y=n)) + geom_bar(stat="identity") + coord_flip()

Representations of relevant GI types found in papers

Prisma report

## total number of papers found
nrow(evidence)
## [1] 1845
## number of papers found outside of WoS
other <- read.csv("data/other.sources.csv")
nrow(other)
## [1] 28
## number of articles excluded
excludes <- evidence %>% filter(exclude=="y")
nrow(excludes)
## [1] 1683
## relevant papers
review <- evidence %>% filter(exclude!="y")
nrow(review)
## [1] 162
## papers for meta
meta <- evidence %>% filter(meta.=="yes")
nrow(meta)
## [1] 132
prisma(found = 1855,
       found_other = 28,
       no_dupes = 1883,
       screened = 1883,
       screen_exclusions = 0,
       full_text = 1883,
       full_text_exclusions = 1721,
       qualitative = 162, 
       quantitative = 33,
       width = 800, height = 800)
## Loading required namespace: DiagrammeR

Literature Review - 3. Synthesis

The research questions we are exploring:

  1. What are the patterns of GI studies globally
  2. How does green infrastructure compare to conventional “grey” equivalents (e.g. green roof to conventional roof)?
  3. How does green infrastructure compare to its natural equivalents (e.g. retention ponds )?
  4. What features of green infrastructure can improve the quality of natural systems?

Patterns of GI Studies Globally

require(ggmap)
###  Start with base map of world
mp <- NULL
mapWorld <- borders("world", colour="gray50", fill="gray50") # create a layer of borders
mp <- ggplot() +   mapWorld

## colorblind-friendly palette
cbPalette <- c("#999999", "#E69F00", "#56B4E9", "#009E73", "#F0E442", "#0072B2", "#D55E00", "#CC79A7","#000000")

meta <- read.csv("data//evidence.updated.csv")
meta <- subset(meta, GI.type!="")

## plot points on top
mp <- mp+ geom_point(data=meta , aes(x=lon, y=lat, color=GI.type), size=2) + scale_colour_manual(values=cbPalette)+
    theme(legend.position="bottom", text = element_text(size=20))
mp

## Number of studies extracted from online data
occurdat<-list.files("data//MS.data",pattern=".csv$",full=T)
length(occurdat)
## [1] 78
## 70 Studies found with usable data for synthesis

Frequency of GI types and taxa

meta <- read.csv("data//Master.GI.Datasets.csv")

freq.GI <- meta %>%  filter(Infrastructure!="grey" & Habitat!="Natural") %>% group_by(GI.type, Taxa.simplified) %>% summarize(n=length(unique(Study))) %>%  data.frame(.)

table.GI <- freq.GI %>% spread(Taxa.simplified, n, fill=0)
#write.csv(table.GI, "Table.GI.csv")

Green infrastructure comparison to conventional

## load master datasets
meta <- read.csv("data//Master.GI.Datasets.csv")
## Omit repo 3 because duplicated with study 1305 and remove repo-9 because not equivalent GI comparisons. Removed Repo 3 because compare roof with ground. Omitted 1307 because duplicate with 1776
meta <- meta %>% filter(Study != "repo.3" & Study!="repo.9" & Study!="repo.1" & Study != 1307) 

## Drop relative abundance because difference = 0 
meta <- meta %>% filter(Estimate!="Relative.Abundance")

## convert SE to SD
meta[meta$Stat == "se", "Value"] <- meta[meta$Stat == "se", "Value"]*sqrt(meta[meta$Stat == "se", "replicate"])
meta[meta$Stat == "se", "Stat"] <- "sd"

## Load packages and functions
library(reshape2)
library(metafor)
source("meta.eval.r") ## Multiple aggregate


## Create Unique identifier column
meta2 <- meta
meta2[,"UniqueSite"] <- paste(meta2$Study, meta2$Taxa.simplified, meta2$GI.compare, meta$Estimate, sep="-")
meta3 <-  meta2 %>% filter(Infrastructure != "natural") %>%  filter()



## Use function to extract summary statistics for comparisons
## meta.eval  arguments are (meta.data, compare, ids , stats)
Infra.compare <- meta.eval(meta3, Infrastructure, UniqueSite, Stat )

## Combine the lists into same dataframe
## Rename Columns in second dataframe
Infra.stat <- Infra.compare[[2]] ## extracted statistics 
names(Infra.stat) <- c("UniqueSite","green_mean","green_sd","grey_mean","grey_sd","green_n","grey_n") ## rename columns to match
Infra.raw <- Infra.compare[[1]] ## calculated statistics from raw values

## Join two dataframes
meta.stat <- rbind(Infra.raw, Infra.stat[, names(Infra.raw)])


meta.ready <- escalc(n1i = grey_n, n2i = green_n, m1i = grey_mean, m2i = green_mean, sd1i = grey_sd, sd2i = green_sd, data = meta.stat, measure = "SMD", append = TRUE)

## separate out the identifiers
siteID <- matrix(unlist(strsplit(meta.ready$UniqueSite,"-")),ncol=4, byrow=TRUE)
siteID <- data.frame(siteID) ## recreate as dataframe
colnames(siteID) <- c("Study","taxa","GI.compare","measure") ## add column names
meta.ready <- cbind(data.frame(meta.ready), siteID)

#random-effects meta-analysis for green infrastructure vs grey
m1 <- rma(yi=yi, vi=vi,  data = meta.ready)
summary(m1) 
## 
## Random-Effects Model (k = 15; tau^2 estimator: REML)
## 
##   logLik  deviance       AIC       BIC      AICc  
## -24.1396   48.2792   52.2792   53.5573   53.3701  
## 
## tau^2 (estimated amount of total heterogeneity): 1.4422 (SE = 0.6306)
## tau (square root of estimated tau^2 value):      1.2009
## I^2 (total heterogeneity / total variability):   90.13%
## H^2 (total variability / sampling variability):  10.14
## 
## Test for Heterogeneity: 
## Q(df = 14) = 84.1182, p-val < .0001
## 
## Model Results:
## 
## estimate      se     zval    pval    ci.lb    ci.ub    
##  -0.9963  0.3340  -2.9835  0.0029  -1.6509  -0.3418  **
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#mixed-effects meta-analysis for green infrastructure vs grey
m2 <- rma(yi=yi, vi=vi, mods=~GI.compare-1,  data = meta.ready)
summary(m2) 
## 
## Mixed-Effects Model (k = 15; tau^2 estimator: REML)
## 
##   logLik  deviance       AIC       BIC      AICc  
## -15.8804   31.7607   43.7607   45.5762   71.7607  
## 
## tau^2 (estimated amount of residual heterogeneity):     1.0449 (SE = 0.5615)
## tau (square root of estimated tau^2 value):             1.0222
## I^2 (residual heterogeneity / unaccounted variability): 86.95%
## H^2 (unaccounted variability / sampling variability):   7.66
## 
## Test for Residual Heterogeneity: 
## QE(df = 10) = 49.9265, p-val < .0001
## 
## Test of Moderators (coefficient(s) 1:5): 
## QM(df = 5) = 19.9972, p-val = 0.0013
## 
## Model Results:
## 
##                           estimate      se     zval    pval    ci.lb
## GI.comparegarden            1.3477  1.1626   1.1592  0.2464  -0.9309
## GI.compareretention pond   -0.8800  0.6308  -1.3950  0.1630  -2.1163
## GI.compareroadsides        -3.5728  1.2506  -2.8568  0.0043  -6.0239
## GI.compareroof             -1.1348  0.4365  -2.6001  0.0093  -1.9903
## GI.comparewall             -0.8206  0.6141  -1.3362  0.1815  -2.0242
##                             ci.ub    
## GI.comparegarden           3.6264    
## GI.compareretention pond   0.3564    
## GI.compareroadsides       -1.1216  **
## GI.compareroof            -0.2794  **
## GI.comparewall             0.3831    
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Produce a forest plot to determine the effect sizes for each study
forest(m1, slab = meta.stat$UniqueSite)

## Check for publication bias
## The symetrical distriubtion suggests there is no publication bias
funnel(m1)

## Calculate rosenthals Failsafe number
fsn(yi, vi, data=meta.ready)
## 
## Fail-safe N Calculation Using the Rosenthal Approach 
## 
## Observed Significance Level: <.0001 
## Target Significance Level:   0.05 
## 
## Fail-safe N: 432
### plot Forest plot with each subgroup
res.w <- rma(yi=yi, vi=vi,  data = meta.ready,
             subset=(GI.compare=="wall"))
res.r <- rma(yi=yi, vi=vi,  data = meta.ready,
             subset=(GI.compare=="roof"))
res.p <- rma(yi=yi, vi=vi,  data = meta.ready,
             subset=(GI.compare=="retention pond"))
res.rd <- rma(yi=yi, vi=vi,  data = meta.ready,
             subset=(GI.compare=="roadsides"))

# ## generate plot with spaces inbetween
# forest(m1, atransf=exp, cex=0.75, ylim=c(-1, 24),
#        order=order(meta.ready$GI.compare,meta.ready$taxa), rows=c(3:4,7,10:16,19:21),
# #         mlab="RE model for all studies", psize=1, slab= paste(meta.ready$Study, meta.ready$taxa, meta.ready$measure))
# 
# addpoly(res.w, row=18, cex=0.75, atransf=exp, mlab="RE model for green wall")
# addpoly(res.r, row= 9, cex=0.75, atransf=exp, mlab="RE model for green roof")
# addpoly(res.rd, row= 6, cex=0.75, atransf=exp, mlab="RE model for roadsides")
# addpoly(res.p, row= 2, cex=0.75, atransf=exp, mlab="RE model for retention ponds")

Green infrastructure comparison to natural equivalent

## Create Unique identifier column
meta2 <- meta
meta2[,"UniqueSite"] <- paste(meta2$Study,  meta2$Taxa.simplified, meta2$Nat.compare, meta2$Estimate, sep="-")

## Remove comparisons except urban and rural
meta2 <- meta2 %>% filter(Habitat == "urban" | Habitat == "natural") %>%  filter (Nat.compare != "park") %>%  filter(Study != 1156)

## Determine the number of comparisons available 
compare.eval(meta2, Habitat, UniqueSite)
## [1] 41
## Use function to extract summary statistics for comparisons
## meta.eval  arguments are (meta.data, compare, ids , stats)
nat.compare <- meta.eval(meta2, Habitat, UniqueSite, Stat )


## Combine the lists into same dataframe
## Rename Columns in second dataframe
nat.stat <- nat.compare[[2]] ## extracted statistics 
names(nat.stat) <- c("UniqueSite","natural_mean","natural_sd","urban_mean","urban_sd","natural_n","urban_n") ## rename columns to match
nat.raw <- nat.compare[[1]] ## calculated statistics from raw values

## Join two dataframes
meta.stat <- rbind(nat.raw, nat.stat[, names(nat.raw)])

meta.ready <- escalc(n1i = urban_n, n2i = natural_n, m1i = urban_mean, m2i = natural_mean, sd1i = urban_sd, sd2i = natural_sd, data = meta.stat, measure = "SMD", append = TRUE)

## separate out the identifiers
siteID <- matrix(unlist(strsplit(meta.ready$UniqueSite,"-")),ncol=4, byrow=TRUE)
siteID <- data.frame(siteID) ## recreate as dataframe
colnames(siteID) <- c("Study","taxa","GI.type","measure") ## add column names
meta.ready <- cbind(data.frame(meta.ready), siteID)


#random-effects meta-analysis for urban GI vs natural

m1 <- rma(yi, vi, data = meta.ready)
summary(m1) 
## 
## Random-Effects Model (k = 40; tau^2 estimator: REML)
## 
##   logLik  deviance       AIC       BIC      AICc  
## -54.1794  108.3588  112.3588  115.6860  112.6922  
## 
## tau^2 (estimated amount of total heterogeneity): 0.7070 (SE = 0.1976)
## tau (square root of estimated tau^2 value):      0.8408
## I^2 (total heterogeneity / total variability):   89.12%
## H^2 (total variability / sampling variability):  9.19
## 
## Test for Heterogeneity: 
## Q(df = 39) = 370.7101, p-val < .0001
## 
## Model Results:
## 
## estimate      se    zval    pval    ci.lb   ci.ub   
##   0.1979  0.1493  1.3262  0.1848  -0.0946  0.4905   
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Natural vs Urban GI
## Produce a forest plot to determine the effect sizes for each study
forest(m1, slab = meta.stat$UniqueSite, order=order(meta.ready$GI.type,meta.ready$taxa))

## Check for publication bias
## The symetrical distriubtion suggests there is no publication bias
funnel(m1)

#mixed-effects meta-analysis for green infrastructure vs grey
m2 <- rma(yi=yi, vi=vi, mods=~GI.type-1,  data = meta.ready)
summary(m2) 
## 
## Mixed-Effects Model (k = 40; tau^2 estimator: REML)
## 
##   logLik  deviance       AIC       BIC      AICc  
## -41.5857   83.1713   97.1713  107.8559  101.4790  
## 
## tau^2 (estimated amount of residual heterogeneity):     0.4192 (SE = 0.1391)
## tau (square root of estimated tau^2 value):             0.6474
## I^2 (residual heterogeneity / unaccounted variability): 82.11%
## H^2 (unaccounted variability / sampling variability):   5.59
## 
## Test for Residual Heterogeneity: 
## QE(df = 34) = 213.6955, p-val < .0001
## 
## Test of Moderators (coefficient(s) 1:6): 
## QM(df = 6) = 25.7780, p-val = 0.0002
## 
## Model Results:
## 
##                                  estimate      se     zval    pval
## GI.typegreen roof vs. grassland   -0.3186  0.4137  -0.7703  0.4411
## GI.typepond                        0.2101  0.1570   1.3385  0.1807
## GI.typeroadsides vs forest         0.0737  0.3691   0.1997  0.8417
## GI.typeurban garden vs. forest    -0.5099  0.3425  -1.4887  0.1366
## GI.typeurban garden vs. meadow     1.7735  0.7047   2.5168  0.0118
## GI.typewetland vs. bioswale        1.9298  0.5016   3.8474  0.0001
##                                    ci.lb   ci.ub     
## GI.typegreen roof vs. grassland  -1.1294  0.4921     
## GI.typepond                      -0.0975  0.5177     
## GI.typeroadsides vs forest       -0.6497  0.7971     
## GI.typeurban garden vs. forest   -1.1812  0.1614     
## GI.typeurban garden vs. meadow    0.3924  3.1546    *
## GI.typewetland vs. bioswale       0.9467  2.9129  ***
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Calculate rosenthals Failsafe number
fsn(yi, vi, data=meta.ready)
## 
## Fail-safe N Calculation Using the Rosenthal Approach 
## 
## Observed Significance Level: <.0001 
## Target Significance Level:   0.05 
## 
## Fail-safe N: 230

Green infrastructure features in relation to measures of green infrastructure

## The area of green infrastructure
names(meta)[20:21] <- c("GI.area","height")
meta.area <- subset(meta, GI.area>0)

## omit Study 536 & 1304 because raw counts
meta.area <- subset(meta.area, Study != 536 & Study != 1304)

## Determine unique identifier
meta.area[,"UniqueSite"] <- paste(meta.area$Study, meta.area$Taxa.simplified, meta.area$Nat.compare, meta.area$Estimate, sep="-")

## Summarize average richness by area sizes
area.stat <- meta.area %>% filter(Stat=="count" | Stat=="mean") %>% filter(Estimate=="richness") %>%   group_by(Study, GI.area, GI.type) %>% summarize(val=mean(Value)) %>%  data.frame(.)

area.rich <- area.stat %>% filter(GI.type=="green roof" | GI.type=="green wall"  | GI.type=="yards/home gardens" | GI.type=="public/community gardens")

library(ggplot2)

## Species richness per area
ggplot(area.rich,  aes(x=GI.area, y=val, color=GI.type) ) + geom_point(size=3) + theme_bw() + scale_color_brewer(palette="Set2") + ylab("Average species richness") + xlab(expression("Average area of green infrastructure (m"^2*")"))+theme(panel.grid.major = element_blank(), panel.grid.minor = element_blank()) +  stat_smooth(method="lm", formula= y~poly(x,2),aes(x=GI.area, y=val), color="#181818", fill="#80808080", data=area.rich)

m1 <- lm(val~poly(GI.area,2), data=area.rich)
summary(m1)
## 
## Call:
## lm(formula = val ~ poly(GI.area, 2), data = area.rich)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -5.3192 -0.8696 -0.0566  1.0480  7.7911 
## 
## Coefficients:
##                   Estimate Std. Error t value Pr(>|t|)    
## (Intercept)         4.8601     0.1859  26.141  < 2e-16 ***
## poly(GI.area, 2)1   9.9386     1.7929   5.543 2.94e-07 ***
## poly(GI.area, 2)2  -7.1637     1.7929  -3.996 0.000132 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.793 on 90 degrees of freedom
## Multiple R-squared:  0.3416, Adjusted R-squared:  0.3269 
## F-statistic: 23.35 on 2 and 90 DF,  p-value: 6.802e-09
## Summarize average abundance by area sizes
area.stat <- meta.area %>% filter(Stat=="count" | Stat=="mean") %>% filter(Estimate=="abundance") %>%   group_by(Study, GI.area, GI.type) %>% summarize(val=mean(Value)) %>%  data.frame(.)

area.abd <- area.stat %>% filter(GI.type=="green roof" | GI.type=="green wall"  | GI.type=="yards/home gardens" | GI.type=="public/community gardens") %>% 
  filter(GI.area<50000) %>%  ## keep numbers approximately similar - removed outlier of 200,000
filter(Study != 1299 & Study != 1127) 

## Species richness per area
ggplot(area.abd,  aes(x=GI.area, y=val, color=GI.type) ) + geom_point(size=3) + theme_bw() + scale_color_brewer(palette="Set2") + ylab("Average abundance of species") + xlab(expression("Average area of green infrastructure (m"^2*")"))+theme(panel.grid.major = element_blank(), panel.grid.minor = element_blank())

m2 <- lm(val~GI.area, data=area.abd)
summary(m2)
## 
## Call:
## lm(formula = val ~ GI.area, data = area.abd)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -27.825 -21.094   1.306  10.658  82.693 
## 
## Coefficients:
##               Estimate Std. Error t value Pr(>|t|)    
## (Intercept) 27.8430165  2.3709545  11.743   <2e-16 ***
## GI.area     -0.0002494  0.0009327  -0.267     0.79    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 21.85 on 119 degrees of freedom
## Multiple R-squared:  0.0006004,  Adjusted R-squared:  -0.007798 
## F-statistic: 0.07149 on 1 and 119 DF,  p-value: 0.7896
## Compare pH for abundance
ph.data <- meta %>%  filter(pH>0) %>%  filter(GI.type=="retention pond" | GI.type=="natural water")
ph.abd <- ph.data %>% filter(Estimate=="abundance" & Stat=="count")%>%   group_by(pH, GI.type) %>% summarize(val=mean(Value)) %>%  data.frame(.)

## plot richness against pH
ggplot(ph.abd,  aes(x=pH, y=val, color=GI.type) ) + geom_point(size=3) + theme_bw() + scale_color_brewer(palette="Set2") + ylab("Average Richness") + xlab("Average pH of Green Infrastructure")+theme(panel.grid.major = element_blank(), panel.grid.minor = element_blank())

## Compare pH for occurrence
ph.occ <- ph.data %>% filter(Estimate=="occurrence")%>%   group_by(pH, GI.type) %>% summarize(val=mean(Value)) %>%  data.frame(.)

m1 <- glm(Value~ pH, family=binomial, data=ph.data %>% filter(Estimate=="occurrence"))
summary(m1)
## 
## Call:
## glm(formula = Value ~ pH, family = binomial, data = ph.data %>% 
##     filter(Estimate == "occurrence"))
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -0.8915  -0.8488  -0.8377   1.5229   1.6131  
## 
## Coefficients:
##             Estimate Std. Error z value Pr(>|z|)
## (Intercept) -0.22413    1.45261  -0.154    0.877
## pH          -0.08643    0.20324  -0.425    0.671
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 308.55  on 251  degrees of freedom
## Residual deviance: 308.37  on 250  degrees of freedom
## AIC: 312.37
## 
## Number of Fisher Scoring iterations: 4
## plot richness against pH
ggplot(ph.occ,  aes(x=pH, y=val, color=GI.type) ) + geom_point(size=3) + theme_bw() + scale_color_brewer(palette="Set2") + ylab("Average Occurrence") + xlab("Average pH of Green Infrastructure")+theme(panel.grid.major = element_blank(), panel.grid.minor = element_blank())

## plot richness against height
h.rich <- meta %>%  filter(height>0)  %>% filter(Estimate=="richness") %>% filter(Stat=="count" | Stat=="mean") %>% group_by(height, GI.type) %>%  summarize(val=mean(Value)) %>%  data.frame(.)

ggplot(h.rich,  aes(x=height, y=val, color=GI.type) ) + geom_point(size=3) + theme_bw() + scale_color_brewer(palette="Set2") + ylab("Average Richness") + xlab("Average Height of Green Infrastructure")+theme(panel.grid.major = element_blank(), panel.grid.minor = element_blank())

## plot abundance against height
h.abd <- meta %>%  filter(height>0)  %>% filter(Estimate=="abundance") %>% filter(Stat=="count" | Stat=="mean") %>% group_by(height, GI.type) %>%  summarize(val=mean(Value)) %>%  data.frame(.)

ggplot(h.abd,  aes(x=height, y=val, color=GI.type) ) + geom_point(size=3) + theme_bw() + scale_color_brewer(palette="Set2") + ylab("Average Abundance") + xlab("Average Height of Green Infrastructure")+theme(panel.grid.major = element_blank(), panel.grid.minor = element_blank())

## Pond salinity
salt <- subset(meta, Salinity>0)
length(unique(salt$Salinity)) ## not enough samples for a meaningful comparison
## [1] 4
## Pond depth
deep <- subset(meta, depth..m.>0)
length(unique(deep$depth..m.)) ## not enough samples for a meaningful comparison
## [1] 8

Technical report analyses

meta <- read.csv("data//Master.GI.Datasets.csv")

spp.n <- meta %>% group_by(Genus) %>% summarize(n=length(Species)) %>% arrange(-n) %>% data.frame()
spp.n
##                          Genus     n
## 1                              18401
## 2                      Columba  2338
## 3                       Passer  1843
## 4                       Turdus  1001
## 5                      Vanessa   699
## 6                      Andrena   696
## 7                       Bombus   555
## 8                       Pieris   515
## 9                 Lasioglossum   440
## 10                       Mimus   367
## 11                   Trifolium   351
## 12                   Sturnidae   344
## 13                    Prunella   331
## 14                      Corvus   310
## 15                     Sturnus   257
## 16                      bromus   232
## 17                   polygonum   232
## 18                     Hylaeus   205
## 19                        Rana   202
## 20                      Nomada   199
## 21                   Megachile   192
## 22                   Cracticus   189
## 23                      Cupido   180
## 24                  Locustella   177
## 25                       Osmia   165
## 26                       Parus   164
## 27                    Chaetura   158
## 28                    Halictus   157
## 29                 Anthochaera   139
## 30                     unknown   139
## 31                   Cyanistes   138
## 32                       Larus   138
## 33                       Sedum   132
## 34                   Epipactis   130
## 35                     Senecio   126
## 36                  Asteraceae   124
## 37                   Cheilosia   120
## 38                    Veronica   117
## 39                      bidens   116
## 40                    Harpalus   116
## 41                     ipomoea   116
## 42                   melilotus   116
## 43                      Mirini   116
## 44                    plantago   116
## 45                         poa   116
## 46                  potentilla   116
## 47                    solidago   116
## 48              symphyotrichum   116
## 49                   trifolium   116
## 50                       ulmus   116
## 51                  Ranunculus   115
## 52                        Acer   113
## 53                     Chloris   111
## 54                      Prunus   111
## 55                     Sonchus   111
## 56                     Mutusca   110
## 57               Trichoglossus   109
## 58                      Nysius   107
## 59                      Bellis   106
## 60                   Sphecodes   105
## 61                   Chaetedus   101
## 62                     Solanum   101
## 63                    Manorina   100
## 64                    Geranium    99
## 65                        Rosa    96
## 66                     Schinus    90
## 67                  Spilopelia    90
## 68                        Pica    89
## 69                       Amara    83
## 70                    Grallina    83
## 71                Acridotheres    80
## 72                        Bufo    79
## 73                   Tanacetum    78
## 74                   Euphorbia    77
## 75                      Oxalis    76
## 76                       Vicia    76
## 77                     Primula    74
## 78                      Sorbus    74
## 79                    Eupeodes    73
## 80                         Poa    73
## 81                   Eristalis    72
## 82                Platycherius    72
## 83               Remaudiereana    72
## 84                   Hypericum    70
## 85                   Stellaria    69
## 86                     Cirsium    68
## 87                      Juncus    68
## 88                       Viola    68
## 89                   Cardamine    67
## 90                      Aglais    66
## 91                   Taraxacum    65
## 92                    Lomandra    64
## 93                 Platycercus    64
## 94                   Coelioxys    63
## 95                      Lamium    63
## 96                    Goodenia    62
## 97                    Plantago    62
## 98                    Dianthus    61
## 99                      Galium    60
## 100                Longitarsus    60
## 101                   Medicago    60
## 102                      Nabis    60
## 103                   Ocyphaps    60
## 104               Stenophyella    60
## 105                   acalypha    58
## 106                       acer    58
## 107                  ageratina    58
## 108                  ailanthus    58
## 109                   alliaria    58
## 110                     Allium    58
## 111                 amaranthus    58
## 112                   ambrosia    58
## 113                    arctium    58
## 114                  artemisia    58
## 115                  asclepias    58
## 116                 calystegia    58
## 117                   capsella    58
## 118                    catalpa    58
## 119                  celastrus    58
## 120                     celtis    58
## 121                 chamaesyce    58
## 122                chenopodium    58
## 123                  cichorium    58
## 124                    cirsium    58
## 125                   clematis    58
## 126                  commelina    58
## 127                convolvulus    58
## 128                     conyza    58
## 129                    cynodon    58
## 130                    cyperus    58
## 131                   dactylis    58
## 132                     daucus    58
## 133                  digitaria    58
## 134                  duchesnea    58
## 135                echinochloa    58
## 136                     elymus    58
## 137                   erigeron    58
## 138                   euonymus    58
## 139                    festuca    58
## 140                  galinsoga    58
## 141                   glechoma    58
## 142                     hedera    58
## 143                hypochaeris    58
## 144                    juglans    58
## 145                     juncus    58
## 146                    lactuca    58
## 147                   lepidium    58
## 148                     lolium    58
## 149                   lonicera    58
## 150                      lotus    58
## 151                   medicago    58
## 152               microstegium    58
## 153                      morus    58
## 154                     oxalis    58
## 155             parthenocissus    58
## 156                  paulownia    58
## 157                 phytolacca    58
## 158                   platanus    58
## 159                    quercus    58
## 160                       rosa    58
## 161                      rubus    58
## 162                      rumex    58
## 163                 securigera    58
## 164                    senecio    58
## 165                    setaria    58
## 166                 sisymbrium    58
## 167                    sonchus    58
## 168                  taraxacum    58
## 169              toxicodendron    58
## 170                   veronica    58
## 171                      vicia    58
## 172                      viola    58
## 173                      vitis    58
## 174               Wahlenbergia    58
## 175                   Bursaria    57
## 176                 Eucalyptus    57
## 177                   Raphanus    56
## 178                  Anagallis    55
## 179                  Polygonum    55
## 180                    Hirundo    54
## 181                    Pararge    53
## 182                       Apis    52
## 183                 Rosmarinus    52
## 184                 Calystegia    51
## 185                  Ligustrum    51
## 186                      Rubus    51
## 187                     Salvia    51
## 188                    Spiraea    51
## 189                Convolvulus    50
## 190                Pelargonium    50
## 191                     Sitona    50
## 192                     Acacia    49
## 193                  Lavandula    49
## 194                    Stachys    49
## 195                    Syrphus    49
## 196                Dasysyrphus    48
## 197                    Galenia    48
## 198                 Helophilus    48
## 199                      Malva    48
## 200                Melanostoma    48
## 201                      plant    48
## 202                 Potentilla    48
## 203                     Sidnia    48
## 204                  Volucella    48
## 205                     Xylota    48
## 206                 Cardinalis    47
## 207                  Epilobium    47
## 208                    Festuca    47
## 209                   Capsella    46
## 210                   Myoporum    46
## 211                      Canna    45
## 212                   Colletes    45
## 213                     Mentha    45
## 214                   Ocirrhoe    45
## 215                     Sylvia    45
## 216                     Conyza    44
## 217                    Lapsana    44
## 218               Glossopsitta    43
## 219                  Anthidium    42
## 220                 Chelostoma    42
## 221                   Glechoma    42
## 222                       Hyla    42
## 223                 Limanarium    42
## 224                    Melitta    42
## 225                  Santolina    42
## 226                  Cerastium    41
## 227                  Cuspicona    41
## 228                Lissotriton    41
## 229                  Melaleuca    41
## 230                   Achillea    40
## 231                    Olearia    40
## 232                     Spinus    40
## 233                   Buddleja    39
## 234                      Carex    39
## 235                    Cacatua    38
## 236               Plectranthus    38
## 237                    Zenaida    38
## 238                    Begonia    37
## 239                       Iris    37
## 240                     Lolium    37
## 241                 Agapanthus    36
## 242                Cotoneaster    36
## 243                Leucophaeus    36
## 244                     Nepeta    36
## 245               Orthotylinae    36
## 246                     Picris    36
## 247                Pseudacris     36
## 248                     Silene    36
## 249                   Halticus    35
## 250                      Rumex    35
## 251                 Anthophora    34
## 252                 Bombycilla    34
## 253                   Dactylis    34
## 254                   Fraxinus    34
## 255                 Pardalotus    34
## 256                    Petunia    34
## 257                      Ajuga    33
## 258                   Atriplex    33
## 259                 Lysimachia    33
## 260                 Melissodes    33
## 261                    Tagetes    33
## 262                   Viburnum    33
## 263                  Aquilegia    32
## 264                  Campanula    32
## 265                     Dietes    32
## 266                    Ficinia    32
## 267                     Gahnia    32
## 268                      Gaura    32
## 269                 Haemorhous    32
## 270                      Lotus    32
## 271                    Papaver    32
## 272                      Salix    32
## 273                  Fringilla    31
## 274                  Hieracium    31
## 275                     Atheta    30
## 276                  Centaurea    30
## 277                   Lathyrus    30
## 278                   Lonicera    30
## 279                  Melospiza    30
## 280                   Myosotis    30
## 281                   Phylinae    30
## 282                     Thymus    30
## 283                   Aesculus    29
## 284              Argyranthemum    29
## 285                Chenopodium    29
## 286                     Crepis    29
## 287                   Eolophus    29
## 288                   Heriades    29
## 289               Leucanthemum    29
## 290               Pentatomidae    29
## 291                  Crataegus    28
## 292                      Hosta    28
## 293                    Lychnis    28
## 294                   Ageratum    27
## 295                    Alyssum    27
## 296                    Anemone    27
## 297                 Anthriscus    27
## 298                Chelidonium    27
## 299                     Cornus    27
## 300                  Digitalis    27
## 301                     Lilium    27
## 302                      Ribes    27
## 303                    Syringa    27
## 304                      Tilia    27
## 305                     Urtica    27
## 306                   Alliaria    26
## 307              Anisodactylus    26
## 308                   Berberis    26
## 309               Ceratostigma    26
## 310                Chinoneides    26
## 311                      Malus    26
## 312                    Muscari    26
## 313               Rhododendron    26
## 314                  Symphytum    26
## 315            Trachelospermum    26
## 316                  Acanthiza    25
## 317                  Duchesnea    25
## 318                   Erysimum    25
## 319                    Fuchsia    25
## 320                     Hedera    25
## 321                Helichrysum    25
## 322                     Hypera    25
## 323                     Iberis    25
## 324                       Ilex    25
## 325                   Laburnum    25
## 326                  Leontodon    25
## 327                   Magnolia    25
## 328                  Narcissus    25
## 329                 Philonthus    25
## 330                 Pulmonaria    25
## 331                    Quedius    25
## 332                   Solidago    25
## 333                 Tachyporus    25
## 334           Tripleurospermum    25
## 335                   Agrostis    24
## 336                 Alchemilla    24
## 337                   Aubretia    24
## 338                     Baccha    24
## 339                  Calendula    24
## 340              Chalcosyrphus    24
## 341                   Cheilosa    24
## 342                    Choisya    24
## 343               Chrysogaster    24
## 344                    Circaea    24
## 345                  Claytonia    24
## 346                   Colpodes    24
## 347                    Crompus    24
## 348               Deraeocorini    24
## 349                  Dictyotus    24
## 350                  Dicyphini    24
## 351                   Dilompus    24
## 352                 Epistrophe    24
## 353                 Episyrphus    24
## 354                      Erica    24
## 355                    Eumerus    24
## 356                  Eupolemus    24
## 357                Ferdinandea    24
## 358                       Hebe    24
## 359                   Heringia    24
## 360              Hyacinthoides    24
## 361                      Inula    24
## 362                       Itea    24
## 363                      Large    24
## 364               Liriodendron    24
## 365                 Matricaria    24
## 366                 Meconopsis    24
## 367                  Melangyna    24
## 368               Melanogaster    24
## 369                 Meliscaeva    24
## 370                    Merodon    24
## 371                  Myathropa    24
## 372                   Neoascia    24
## 373                    Nigella    24
## 374                     Orchis    24
## 375                 Oxycarenus    24
## 376                      Pansy    24
## 377                Parasyrphus    24
## 378                  Phygelius    24
## 379                  Pilosella    24
## 380               Platycheirus    24
## 381                 Plinthisus    24
## 382                Polyommatus    24
## 383                 Portevinia    24
## 384              Pseudofumaria    24
## 385                 Rhinanthus    24
## 386                    Rhingia    24
## 387                  Rhipidura    24
## 388                Riponnensia    24
## 389                   Sambucas    24
## 390                     Scaeva    24
## 391                      Small    24
## 392              Sphaerophoria    24
## 393                    Syritta    24
## 394                     Tingis    24
## 395                       Ulex    24
## 396                   Vanellus    24
## 397                     Violet    24
## 398                   Weigelia    24
## 399               Xanthogramma    24
## 400                     Yellow    24
## 401                  Bembidion    23
## 402                  Galinsoga    23
## 403                      Pinus    23
## 404                  Artemisia    22
## 405                   Baptisia    22
## 406                     Correa    22
## 407                Hypochaeris    22
## 408                      Orius    22
## 409                    Verbena    22
## 410                Xerochrysum    22
## 411                     Celtis    21
## 412                    Lythrum    21
## 413                  Aleochara    20
## 414                       Anas    20
## 415                 Eysarcoris    20
## 416                  Mcateella    20
## 417                Phyllotreta    20
## 418                  Protapion    20
## 419                    Amorbus    19
## 420                   Clematis    19
## 421                      Falco    19
## 422                     Nebria    19
## 423                Stephanitis    19
## 424                 Amaranthus    18
## 425                 Baclozygum    18
## 426                Coridromius    18
## 427                   Emesinae    18
## 428              Lagerstraemia    18
## 429                 Megachilie    18
## 430                      Phaps    18
## 431                  Ptilotula    18
## 432               Brentiscerus    17
## 433                  Erythrina    17
## 434                  Grevillea    17
## 435                    Robinia    17
## 436                     Abelia    16
## 437                   Agelaius    16
## 438                Brachyscome    16
## 439                   Dindymus    16
## 440                 Ozothamnus    16
## 441                 Parietaria    16
## 442               Pheropsophus    16
## 443                 Sericornis    16
## 444                   Synuchus    16
## 445                   Agriotes    15
## 446                   Atomaria    15
## 447                 Cermatulus    15
## 448             Cryptocephalus    15
## 449                   Cymodema    15
## 450                 Froggattia    15
## 451                    Gabrius    15
## 452                   Gminatus    15
## 453                     Mictis    15
## 454                     Nerium    15
## 455               Platystethus    15
## 456                   Sambucus    15
## 457                     Stenus    15
## 458                    Tychius    15
## 459                   Ceratina    14
## 460                    Certhia    14
## 461                   Corvidae    14
## 462                  Lamiaceae    14
## 463                   Lepidium    14
## 464                 Lithobates    14
## 465               Pterostichus    14
## 466                  Rudbeckia    14
## 467                      Ulmus    14
## 468                    Lactuca    13
## 469                    Malurus    13
## 470                    Unknown    13
## 471                Agapostemon    12
## 472               Angiozanthos    12
## 473                   Anischys    12
## 474                   Bauhinia    12
## 475              Buchananiella    12
## 476                     Cletus    12
## 477                    Coranus    12
## 478                Creontiades    12
## 479             Cryptorhamphus    12
## 480                      Culex    12
## 481                   Dianella    12
## 482                 Dicrotelus    12
## 483                   Dieuches    12
## 484                 Diplocysta    12
## 485                     Echium    12
## 486                   Eribotes    12
## 487                  Eritingis    12
## 488                    Euander    12
## 489                     Eucera    12
## 490                 Eurynysius    12
## 491                    Gelonus    12
## 492                   Germalus    12
## 493                       Geum    12
## 494                Hesperiidae    12
## 495                  Hydrangea    12
## 496               Koscocrompus    12
## 497              Lasioglossum     12
## 498                  Lethaeini    12
## 499                 Malandiola    12
## 500              Melanacanthus    12
## 501                      Melia    12
## 502                     Nezara    12
## 503                     Notius    12
## 504                   Oechalia    12
## 505                  Oncocoris    12
## 506                   Ontiscus    12
## 507                  Penstemon    12
## 508               Pipistrellus    12
## 509                  Portulaca    12
## 510                 Pseudacris    12
## 511                     Stelis    12
## 512              Stizocephalus    12
## 513              Stylogeocoris    12
## 514             Symphyotrichum    12
## 515             Thaumastocoris    12
## 516                   Ulonemia    12
## 517                    Zanessa    12
## 518                     Agonum    11
## 519                  Ailanthus    11
## 520                  Asclepias    11
## 521                     Betula    11
## 522                  Ceratonia    11
## 523                     Colias    11
## 524                    Delonix    11
## 525                Deschampsia    11
## 526                 Eupatorium    11
## 527                     Eurema    11
## 528                    Hordeum    11
## 529                    Kickxia    11
## 530                   Oedemera    11
## 531                       Olea    11
## 532                    Ophonus    11
## 533               Phylloscopus    11
## 534                   Syntomus    11
## 535                    Tamarix    11
## 536                      Thuja    11
## 537                    Agathis    10
## 538                    Amischa    10
## 539                Amphimallon    10
## 540                 Asiorestia    10
## 541               Bignoniaceae    10
## 542                    Bledius    10
## 543               Brachychiton    10
## 544                 Brachypera    10
## 545                Bradycellus    10
## 546                   Calathus    10
## 547                 Carpelimus    10
## 548                     Cedrus    10
## 549              Ceutorhynchus    10
## 550                Chaetocnema    10
## 551               Chlorophytum    10
## 552                Corticarina    10
## 553                Cortinicara    10
## 554                  Cyanapion    10
## 555                  Danthonia    10
## 556                   Diabolia    10
## 557              Dichanthelium    10
## 558                 Elaphropus    10
## 559                    Epuraea    10
## 560                   Galeruca    10
## 561                      Hakea    10
## 562               Harpephyllum    10
## 563             Hemitrichapion    10
## 564                   Ionactis    10
## 565                  Lagunaria    10
## 566                  Lespedeza    10
## 567               Margarinotus    10
## 568             Melanophthalma    10
## 569                   Monotoma    10
## 570                      Morus    10
## 571                       Musa    10
## 572                     Ocypus    10
## 573                Onthophagus    10
## 574                     Othius    10
## 575                    Panicum    10
## 576                   Platanus    10
## 577                Platydracus    10
## 578                  Polygonia    10
## 579              Pseudoophonus    10
## 580                 Psylliodes    10
## 581               Pycnanthemum    10
## 582              Schizachyrium    10
## 583                   Scopaeus    10
## 584                    Searsia    10
## 585                    Sophora    10
## 586                Sorghastrum    10
## 587                    Tasgius    10
## 588                      Trema    10
## 589                Xantholinus    10
## 590                     Bromus     9
## 591                    Melecta     9
## 592                Mercurialis     9
## 593                    Monarda     9
## 594                    Mycelis     9
## 595                  Psephotus     9
## 596                  Angelonia     8
## 597               Anthropodium     8
## 598                    Arctium     8
## 599              Augochlorella     8
## 600              Bougainvillea     8
## 601                  Brachinus     8
## 602                  Chlaenius     8
## 603                     Clivia     8
## 604                  Craspedia     8
## 605                     Daucus     8
## 606                   Dolichus     8
## 607                   Fallopia     8
## 608                 Foeniculum     8
## 609             Haplochlaenius     8
## 610                   Lecanora     8
## 611                   Lesticus     8
## 612                 Megachile      8
## 613                 Persicaria     8
## 614                      Phyla     8
## 615                 Pomaderris     8
## 616                  Verbascum     8
## 617                   Xylocopa     8
## 618                  Accipiter     7
## 619                   Badister     7
## 620                  Caloplaca     7
## 621              Colluricincla     7
## 622                   Coracina     7
## 623                  Digitaria     7
## 624                   Erigeron     7
## 625                   Hylaeus      7
## 626               Phylidonyris     7
## 627                   Poecilus     7
## 628                    Rorippa     7
## 629                 Sisymbrium     7
## 630                      Aedes     6
## 631                    Amorpha     6
## 632                 Augochlora     6
## 633                    Ballota     6
## 634             Chrysoceohalum     6
## 635                      Dalea     6
## 636                Echinochloa     6
## 637                  Elytrigia     6
## 638                   Hoplitis     6
## 639                  Kalanchoe     6
## 640                    Linaria     6
## 641                    Liriope     6
## 642                   Loricera     6
## 643              Melanocanthus     6
## 644                  Molothrus     6
## 645               Pachycephala     6
## 646                    Pimelea     6
## 647                   Podargus     6
## 648                     Sagina     6
## 649                    Serinus     6
## 650                  Sherardia     6
## 651                    Sinapis     6
## 652                 Strelitzia     6
## 653                   Tingidae     6
## 654                      Zizia     6
## 655                 Ablattaria     5
## 656                   Acrotona     5
## 657                  Acupalpus     5
## 658                   Agrypnus     5
## 659                      Alcea     5
## 660                  Aloconota     5
## 661                     Altica     5
## 662                 Amarochara     5
## 663                   Anacaena     5
## 664                    Anaspis     5
## 665                   Anotylus     5
## 666                   Anthicus     5
## 667                  Anthrenus     5
## 668                  Anthribus     5
## 669                   Aphodius     5
## 670                   Arenaria     5
## 671                   Arpedium     5
## 672                 Arthrolips     5
## 673                    Astenus     5
## 674                   Bacidina     5
## 675                      Baris     5
## 676                     Bitoma     5
## 677                    Bombus      5
## 678              Brachythecium     5
## 679                   Brassica     5
## 680                    Bruchus     5
## 681                    Byrrhus     5
## 682                  Cantharis     5
## 683                  Carduelis     5
## 684                  Cartodere     5
## 685                    Cassida     5
## 686                 Ceratapion     5
## 687                    Cercyon     5
## 688                 Chrysolina     5
## 689                   Cidnopus     5
## 690                        Cis     5
## 691                Clanoptilus     5
## 692                 Coccinella     5
## 693                 Corticaria     5
## 694                   Corymbia     5
## 695               Cryptophagus     5
## 696              Cryptopleurum     5
## 697                  Cteniopus     5
## 698                 Curtimorda     5
## 699                 Cyanocitta     5
## 700                  Cynegetis     5
## 701                    Cytilus     5
## 702                   Dinaraea     5
## 703                Dolichosoma     5
## 704                     Dorcus     5
## 705                     Dryops     5
## 706                    Enicmus     5
## 707                Ennearthron     5
## 708                 Ephistemus     5
## 709                    Erigone     5
## 710                  Eucinetus     5
## 711               Eutrichapion     5
## 712                   Fragaria     5
## 713                Gastrophysa     5
## 714                Gauropterus     5
## 715                  Gymnetron     5
## 716                 Gyrohypnus     5
## 717                    Halyzia     5
## 718                   Harmonia     5
## 719                 Helophorus     5
## 720                   Hibiscus     5
## 721                 Hippodamia     5
## 722               Hirschfeldia     5
## 723                 Hirticomus     5
## 724                      Hispa     5
## 725                     Hister     5
## 726                     Holcus     5
## 727             Holotrichapion     5
## 728                     Hoplia     5
## 729                  Impatiens     5
## 730            Ischnopterapion     5
## 731                 Ischnosoma     5
## 732                  Lionychus     5
## 733                Lithocharis     5
## 734                    Mecinus     5
## 735                Megasternum     5
## 736                Melissodes      5
## 737                   Metopsia     5
## 738                Microlestes     5
## 739                Mycetoporus     5
## 740                Necrophorus     5
## 741                 Neobisnius     5
## 742                     Ocyusa     5
## 743                    Olibrus     5
## 744                    Omalium     5
## 745                   Omonadus     5
## 746                  Orchestes     5
## 747                   Origanum     5
## 748               Otiorhynchus     5
## 749                     Oulema     5
## 750                    Oxyomus     5
## 751                    Oxypoda     5
## 752                   Oxystoma     5
## 753                  Parocyusa     5
## 754                 Parophonus     5
## 755                  Peponapis     5
## 756                   Physalis     5
## 757                 Pityogenes     5
## 758                Plathyrinus     5
## 759                Platynaspis     5
## 760                   Propylea     5
## 761                  Proteinus     5
## 762                 Psammodius     5
## 763                 Psyllobora     5
## 764                    Rabigus     5
## 765                    Rhinusa     5
## 766                  Rhyzobius     5
## 767                  Saponaria     5
## 768               Sepedophilus     5
## 769                    Sibinia     5
## 770                Simplocaria     5
## 771                  Stegobium     5
## 772                  Stelidota     5
## 773                 Stenocarus     5
## 774                Stenolophus     5
## 775             Stenopterapion     5
## 776         Teretriorhynchites     5
## 777              Thanatophilus     5
## 778                   Timarcha     5
## 779                    Tinotus     5
## 780                    Trechus     5
## 781            Trichopterapion     5
## 782            Trichosirocalus     5
## 783                 Triepeolus     5
## 784                    Tritoma     5
## 785                 Tytthaspis     5
## 786                     Valgus     5
## 787                 Variimorda     5
## 788                  Xyleborus     5
## 789                   Zacladus     5
## 790                   Zoosetha     5
## 791                  Zorochros     5
## 792                   Acanthus     4
## 793                Archilochus     4
## 794              Brachychitron     4
## 795               Brachypodium     4
## 796                  Caligavis     4
## 797                   Cassinia     4
## 798                  Cisticola     4
## 799                     Cistus     4
## 800                  Coleonema     4
## 801                  Dumetella     4
## 802                 Eopsaltria     4
## 803                  Equisetum     4
## 804                    Erodium     4
## 805                 Galaxiella     4
## 806                 Helianthus     4
## 807                   Limanium     4
## 808                    Melissa     4
## 809                    Nandina     4
## 810                Notiophilus     4
## 811                   Nyctalus     4
## 812                  Oenothera     4
## 813                 Pelagonium     4
## 814                 Soleirolia     4
## 815                    Torilis     4
## 816                  Tussilago     4
## 817                 Verrucaria     4
## 818               Walckenaeria     4
## 819            Acanthorhynchus     3
## 820                 Aegithalos     3
## 821                 Aegopodium     3
## 822                   Andrena      3
## 823                Antirrhinum     3
## 824                    Astilbe     3
## 825                   Barbarea     3
## 826                     Borago     3
## 827                Calibrachoa     3
## 828              Candelariella     3
## 829                   Carpinus     3
## 830                  Casuarina     3
## 831                 Centaurium     3
## 832                  Cichorium     3
## 833                   Cladonia     3
## 834                     Cleome     3
## 835                   Colleies     3
## 836                  Coreopsis     3
## 837                  Corydalis     3
## 838                     Cosmos     3
## 839                  Cucurbita     3
## 840                     Dacelo     3
## 841                     Dahlia     3
## 842              Diplocephalus     3
## 843                 Diplotaxis     3
## 844                 Dryopteris     3
## 845                  Echinacea     3
## 846                      Ficus     3
## 847                  Gladiolus     3
## 848                  Halictus      3
## 849               Hemerocallis     3
## 850                  Herniaria     3
## 851                   Heuchera     3
## 852                  Isodontia     3
## 853                  Kniphofia     3
## 854                    Lantana     3
## 855                     Lasius     3
## 856                    Liatris     3
## 857                      Linum     3
## 858                    Lobelia     3
## 859                     Luzula     3
## 860                  Melilotus     3
## 861                   Neochmia     3
## 862                     Ocimum     3
## 863                 Oedothorax     3
## 864                    Papilio     3
## 865                  Perovskia     3
## 866                      Phlox     3
## 867             Pseudopanurgus     3
## 868                    Quercus     3
## 869                     Reseda     3
## 870                 Rondeletia     3
## 871                Schistidium     3
## 872                    Setaria     3
## 873                  Setophaga     3
## 874                Spergularia     3
## 875                   Strepera     3
## 876                    Svastra     3
## 877                      Taxus     3
## 878               Tenuiphantes     3
## 879               Tradescantia     3
## 880                   Trapelia     3
## 881                Troglodytes     3
## 882                    Vespula     3
## 883                      Vinca     3
## 884                    Weigela     3
## 885                  Xanthoria     3
## 886                     Zinnia     3
## 887               Agapostemon      2
## 888                  Agastache     2
## 889                   Amegilla     2
## 890                    Anethum     2
## 891                  Angophora     2
## 892                 Anthidium      2
## 893                Arabidopsis     2
## 894                  Araucaria     2
## 895                 Artocarpus     2
## 896                  Asplenium     2
## 897                 Baeolophus     2
## 898               Bathyphantes     2
## 899                     Bidens     2
## 900                      Bryum     2
## 901                 Calliopsis     2
## 902                   Capsicum     2
## 903                Carpobrotus     2
## 904                 Celastrina     2
## 905                    Celosia     2
## 906                Centromerus     2
## 907                  Ceratina      2
## 908                  chinensis     2
## 909                 Cinnamomum     2
## 910                   Clubiona     2
## 911                  Commelina     2
## 912                 Coriandrum     2
## 913                    Corylus     2
## 914                     Cotula     2
## 915                    Cucumis     2
## 916                   Cyclamen     2
## 917                 Cymbalaria     2
## 918                     Datura     2
## 919                Dendrocopos     2
## 920                Dodecatheon     2
## 921               Enoplognatha     2
## 922                    Epacris     2
## 923                    Epeolus     2
## 924                 Eragrostis     2
## 925                 Eriobotrya     2
## 926                     Falcol     2
## 927                      Gagea     2
## 928                  Galanthus     2
## 929                    Galenis     2
## 930                  Galeopsis     2
## 931                     Hahnia     2
## 932                  Heleborus     2
## 933                  Hippolais     2
## 934               Holcopasites     2
## 935                       Hoya     2
## 936                    Humulus     2
## 937              Hylotelephium     2
## 938                     Hypnum     2
## 939               Ichthyosaura     2
## 940                    Icterus     2
## 941                    Ipomoea     2
## 942                  Jacaranda     2
## 943                   Jasminum     2
## 944                     Lablab     2
## 945                    Lecania     2
## 946                  Lecidella     2
## 947                   Lepraria     2
## 948                   Linyphia     2
## 949                Lipotriches     2
## 950                Lophostemon     2
## 951                   Macropis     2
## 952                     maxima     2
## 953                  Megalurus     2
## 954                   Meioneta     2
## 955                     Melica     2
## 956               Melithreptus     2
## 957                  Nemastoma     2
## 958               Nesoptilotis     2
## 959                   Observed     2
## 960               Orthotrichum     2
## 961                   Ozyptila     2
## 962             Parthenocissus     2
## 963                 Pelophylax     2
## 964              Petrochelidon     2
## 965               Petroselinum     2
## 966               Phaeophyscia     2
## 967                 Philanthus     2
## 968                Phoenicurus     2
## 969                    Phoenix     2
## 970                    Physcia     2
## 971                 Phytolacca     2
## 972              Placynthiella     2
## 973                 Platycodon     2
## 974                   Plumbago     2
## 975                    Populus     2
## 976                  Porrhomma     2
## 977                    Prionyx     2
## 978                   Ratibida     2
## 979                      regia     2
## 980                 Salamandra     2
## 981                Sanguisorba     2
## 982                  Saxifraga     2
## 983                   Scabiosa     2
## 984               Scrophularia     2
## 985                 Securigera     2
## 986                Sempervivum     2
## 987                   Sorbaria     2
## 988                      Sphex     2
## 989                     Spirea     2
## 990                   Spizella     2
## 991                   Steatoda     2
## 992                   Stokesia     2
## 993                     Sutera     2
## 994                   Syzygium     2
## 995                  Tegenaria     2
## 996                    Torenia     2
## 997                    Tortula     2
## 998                 Tragopogon     2
## 999                  Triodanis     2
## 1000                  Triturus     2
## 1001              Unidentified     2
## 1002                 variegata     2
## 1003             Veronicastrum     2
## 1004                Vittadinia     2
## 1005                Westringia     2
## 1006              Zantedeschia     2
## 1007                Iphiclides     1
## 1008                  Acarospo     1
## 1009                  Aconitum     1
## 1010                   Aethusa     1
## 1011              Afranthidium     1
## 1012                 Ageratina     1
## 1013                 Agrimonia     1
## 1014                   Agroeca     1
## 1015                      alba     1
## 1016                 Aleurites     1
## 1017                alexandrae     1
## 1018                    Alisma     1
## 1019                  Aloxyria     1
## 1020                 Amandinea     1
## 1021              Amblystegium     1
## 1022                  Ambrosia     1
## 1023               Amelanchier     1
## 1024                 americana     1
## 1025                Anchomenus     1
## 1026             Ancistrocerus     1
## 1027                    Annona     1
## 1028               Anthophora      1
## 1029                 Anyphaena     1
## 1030                     Apera     1
## 1031                     Apis      1
## 1032                  Apocynum     1
## 1033                 Araeoncus     1
## 1034           Archontophoenix     1
## 1035             Arrhenatherum     1
## 1036                Asaphidion     1
## 1037                 Asparagus     1
## 1038                  Asperula     1
## 1039                 Aspicilia     1
## 1040                     Aster     1
## 1041               Augochlora      1
## 1042                     Avena     1
## 1043                 azedarach     1
## 1044                babylonica     1
## 1045                    Ballus     1
## 1046                   Barbula     1
## 1047                    Bembix     1
## 1048                 benjamina     1
## 1049                  Berteroa     1
## 1050                 Bischofia     1
## 1051                    Bombax     1
## 1052        Bryoerythrophyllum     1
## 1053                   Bryonia     1
## 1054                   Buellia     1
## 1055                 burmanii*     1
## 1056                     Buteo     1
## 1057                     Buxus     1
## 1058  cajuputi ssp. Cumingiana     1
## 1059             Calamagrostis     1
## 1060                Calamintha     1
## 1061               Callistemon     1
## 1062                Calophasia     1
## 1063               campanulata     1
## 1064                 camphora*     1
## 1065                   Carabus     1
## 1066                  Caragana     1
## 1067                   Carduus     1
## 1068                    Carica     1
## 1069                   Caryota     1
## 1070                   catappa     1
## 1071                     ceiba     1
## 1072               Ceratinella     1
## 1073                 Ceratodon     1
## 1074                  Cerceris     1
## 1075              Chaenorhinum     1
## 1076             Chaenorrhinum     1
## 1077             Chaerophyllum     1
## 1078                 Chalybion     1
## 1079                   Chelone     1
## 1080                Chionodoxa     1
## 1081                Chondrilla     1
## 1082                  Cicurina     1
## 1083                     Cinn.     1
## 1084                    Citrus     1
## 1085                  Clausena     1
## 1086                 Clauzadea     1
## 1087                   Clivina     1
## 1088            Coccothraustes     1
## 1089                     Cocos     1
## 1090                Coelioxys      1
## 1091               Coenogonium     1
## 1092                    Coleus     1
## 1093                   confusa     1
## 1094                    Conium     1
## 1095               Convallaria     1
## 1096              Corynephorus     1
## 1097               Crabroninae     1
## 1098                   Crateva     1
## 1099                 Crocosmia     1
## 1100                    Crocus     1
## 1101               Crossocerus     1
## 1102                    cumini     1
## 1103            cunninghamiana     1
## 1104              cunninghamii     1
## 1105                 Cupressus     1
## 1106                     Cycas     1
## 1107                   Cynodon     1
## 1108               Cystopteris     1
## 1109                Delphinium     1
## 1110                  denudata     1
## 1111               Descurainia     1
## 1112                 Desmodium     1
## 1113                  Dicentra     1
## 1114                 Didymodon     1
## 1115                 Diervilla     1
## 1116                Dimocarpus     1
## 1117                Diplostyla     1
## 1118                  Dipsacus     1
## 1119              Doellingeria     1
## 1120            Dolichovespula     1
## 1121                     Draba     1
## 1122             Dracontomelon     1
## 1123               duperreanum     1
## 1124                    Dypsis     1
## 1125                Dyschirius     1
## 1126                   Dysdera     1
## 1127              Echinocystis     1
## 1128                  Echinops     1
## 1129                 Ectemnius     1
## 1130                 Elaeagnus     1
## 1131               Elaeocarpus     1
## 1132                  Elaphrus     1
## 1133                  elastica     1
## 1134                 elliottii     1
## 1135                    Elymus     1
## 1136                 Empidonax     1
## 1137                Entelecara     1
## 1138                  Episinus     1
## 1139             equisetifolia     1
## 1140                  Eranthis     1
## 1141                 Eratigena     1
## 1142                Erigonella     1
## 1143                       Ero     1
## 1144                  Eryngium     1
## 1145                 Estimated     1
## 1146                   Eumenes     1
## 1147                Euodynerus     1
## 1148                  Euonymus     1
## 1149                  Euophrys     1
## 1150               Eurhynchium     1
## 1151                  Euryopis     1
## 1152                Eutrochium     1
## 1153                  Exoneura     1
## 1154                     Fagus     1
## 1155                   Ficaria     1
## 1156                    Filago     1
## 1157                  Floronia     1
## 1158                  funebris     1
## 1159                Gaillardia     1
## 1160                  Garrulus     1
## 1161                glutinosa*     1
## 1162             Glyptostrobus     1
## 1163              Gnathonarium     1
## 1164                 Gomphrena     1
## 1165                  Gonatium     1
## 1166               Gongylidium     1
## 1167                   Gorytes     1
## 1168                  granatum     1
## 1169               grandiflora     1
## 1170                  Graphium     1
## 1171                   Grimmia     1
## 1172                   guajava     1
## 1173                Gypsophila     1
## 1174               hainanensis     1
## 1175              Haplodrassus     1
## 1176                 Harpactea     1
## 1177                  Helenium     1
## 1178                 Heliopsis     1
## 1179              heptaphylla*     1
## 1180                 Heracleum     1
## 1181              heterophylla     1
## 1182            heterophyllum*     1
## 1183             heterophyllus     1
## 1184                Homalictus     1
## 1185             Homalothecium     1
## 1186                Hyacinthus     1
## 1187              Hyperphyscia     1
## 1188              Hypocenomyce     1
## 1189                Hypogymnia     1
## 1190                  Hyssopus     1
## 1191                    indica     1
## 1192                    jambos     1
## 1193                  japonica     1
## 1194                 javanica*     1
## 1195                 Juniperus     1
## 1196                   Knautia     1
## 1197                   lansium     1
## 1198                  Lavatera     1
## 1199                   Lecidea     1
## 1200                  Leimonis     1
## 1201                   Leistus     1
## 1202             Lepthyphantes     1
## 1203                   Lestica     1
## 1204                   Licinus     1
## 1205                 Ligularia     1
## 1206                 Liocranum     1
## 1207                    Litchi     1
## 1208                    Litsea     1
## 1209                    longan     1
## 1210                 lutescens     1
## 1211                   Lycopus     1
## 1212                 Macaranga     1
## 1213             macrophyllus*     1
## 1214          madagascariensis     1
## 1215                   Mahonia     1
## 1216                 Mangifera     1
## 1217                   mangium     1
## 1218                 Manilkara     1
## 1219               massoniana*     1
## 1220                Matteuccia     1
## 1221                  Michelia     1
## 1222                 Micrargus     1
## 1223               microcarpa*     1
## 1224                 Microneta     1
## 1225                Milleriana     1
## 1226                 Mniotilta     1
## 1227                Moehringia     1
## 1228                 moluccana     1
## 1229                   Monobia     1
## 1230                 Motacilla     1
## 1231                 Muscicapa     1
## 1232                 Myrmecina     1
## 1233                 Neottiura     1
## 1234                   Neriene     1
## 1235                 Nicotiana     1
## 1236 nitidus ssp. lingnanensis     1
## 1237                  nucifera     1
## 1238                  Odiellus     1
## 1239                 Odontites     1
## 1240                  oleander     1
## 1241                    Ononis     1
## 1242              Ornithogalum     1
## 1243                    Osmia      1
## 1244                  Oxybelus     1
## 1245            Palliduphantes     1
## 1246                    papaya     1
## 1247                   Pardosa     1
## 1248                  Parmelia     1
## 1249               Passaloecus     1
## 1250                 Pastinaca     1
## 1251                 Paulownia     1
## 1252                Pelecopsis     1
## 1253                Pemphredon     1
## 1254                  pensilis     1
## 1255                Peponapis      1
## 1256                    Persea     1
## 1257               Petrorhagia     1
## 1258                 Phaseolus     1
## 1259                  Phedimus     1
## 1260              Philadelphus     1
## 1261                    Phleum     1
## 1262                  Phlyctis     1
## 1263                   Pholcus     1
## 1264              Phrurolithus     1
## 1265               Physostegia     1
## 1266                     Picea     1
## 1267                     Picus     1
## 1268                Pimpinella     1
## 1269                  pinnata*     1
## 1270                    Pipilo     1
## 1271               Pittosporum     1
## 1272               Plagiomnium     1
## 1273                  Plumeria     1
## 1274                Podocarpus     1
## 1275                  Polistes     1
## 1276                Polycarpon     1
## 1277               Polygonatum     1
## 1278                 Polyscias     1
## 1279               Polytrichum     1
## 1280                    Ponera     1
## 1281                  Pongamia     1
## 1282                    Porina     1
## 1283                  Porpidia     1
## 1284               Prinerigone     1
## 1285                  Psenulus     1
## 1286              Pseudevernia     1
## 1287               Pseudotsuga     1
## 1288                   Psidium     1
## 1289               Psilolechia     1
## 1290              Pterospermum     1
## 1291                Pulsatilla     1
## 1292                    Punica     1
## 1293                Pyracantha     1
## 1294                  Ramalina     1
## 1295                  Ravenala     1
## 1296                  revoluta     1
## 1297                Reynoutria     1
## 1298            Rhynchostegium     1
## 1299                   Rilaena     1
## 1300                  Robertus     1
## 1301                   robusta     1
## 1302                roebelenii     1
## 1303             romanzoffiana     1
## 1304                 Roystonea     1
## 1305                     rubra     1
## 1306                 Sarcogyne     1
## 1307                  Satureja     1
## 1308                 Satyrinae     1
## 1309                  Scaevola     1
## 1310                Sceliphron     1
## 1311                Schefflera     1
## 1312                    Scilla     1
## 1313                    Scolia     1
## 1314            Scoliciosporum     1
## 1315                  Scolopax     1
## 1316            Scorzoneroides     1
## 1317                 Segestria     1
## 1318                     Senna     1
## 1319                 sinensis*     1
## 1320                     Sitta     1
## 1321                       sp.     1
## 1322                 Spathodea     1
## 1323                  Sphecius     1
## 1324                  squamosa     1
## 1325            Stemonyphantes     1
## 1326              Stereocaulon     1
## 1327                     Stipa     1
## 1328               surattensis     1
## 1329                   Syagrus     1
## 1330                Symmorphus     1
## 1331            Symphoricarpos     1
## 1332                 Syncarpia     1
## 1333                  Tachytes     1
## 1334   tanarius var. tomentosa     1
## 1335                Terminalia     1
## 1336               Tetragonula     1
## 1337                Thalictrum     1
## 1338                   Thyreus     1
## 1339                 Toxomerus     1
## 1340                tripinnata     1
## 1341                  Trochosa     1
## 1342                  Trogulus     1
## 1343                Tropaeolum     1
## 1344                Troxochrus     1
## 1345                Trypoxylon     1
## 1346                     Tsuga     1
## 1347                    Tulipa     1
## 1348              unilocularis     1
## 1349                 Valeriana     1
## 1350                   Vezdaea     1
## 1351                 viminalis     1
## 1352                     Vitex     1
## 1353                    Vulpia     1
## 1354                 Vulpicida     1
## 1355                 Xylocopa      1
## 1356                  Xysticus     1
## 1357                   Yulania     1
## 1358                    zapota     1
## 1359                  Zodarion     1
## 1360                      Zora     1
spp.nbird <- meta %>% filter(Taxa.simplified!="birds") %>%  group_by(Genus) %>% summarize(n=length(Species)) %>% arrange(-n) %>% data.frame() %>% head()
spp.nbird
##     Genus     n
## 1         18401
## 2 Columba  2338
## 3  Passer  1843
## 4  Turdus  1001
## 5 Vanessa   699
## 6 Andrena   696
## Appendix Figures

meta <- read.csv("data//Master.GI.Datasets.csv")
## Omit repo 3 because duplicated with study 1305 and remove repo-9 because not equivalent GI comparisons. Removed Repo 3 because compare roof with ground
meta <- meta %>% filter(Study != "repo.3" & Study!="repo.9" & Study!="repo.1") 

## Drop relative abundance because difference = 0 
meta <- meta %>% filter(Estimate!="Relative.Abundance")

## pH

ph.count <- subset(meta, pH>0 & Genus != "")

ggplot(ph.count) + geom_density(aes(pH, fill=Genus), position="stack") + xlab("pH of retention pond") + ylab("frequency of occurrence")+theme_set(theme_bw(base_size = 22))+theme_bw()

se <- function(x) {sd(x)/sqrt(length(x))}

## Depth
depth <- subset(meta, depth..m.>0 )
depth <- depth %>% group_by(depth..m.) %>% summarize(avg=mean(Value), error=se(Value))

ggplot(depth, aes(x=depth..m., y=avg)) + geom_point( size=4) + geom_errorbar(data=depth, aes(ymin=avg-error, ymax=avg+error), width=0.03)+ xlab("depth of retention pond (m)") + ylab("average number of individuals observed")+theme_set(theme_bw(base_size = 22))+theme_bw()

## Height
high <- subset(meta, GI.height..m.>0 & Stat=="mean")
high <- filter(high, Estimate %in% c("abundance","richness"))
high <- high %>% group_by(GI.height..m.,Estimate) %>% summarize(Value=mean(Value))

ggplot(high) + geom_point(aes(x=GI.height..m., y=Value)) + facet_grid(~Estimate)+ xlab("height of green roof (m)") + ylab("average number observed")+theme_set(theme_bw(base_size = 22))+theme_bw()