
Applying yourself to
Environmental data

Clement Kent

clementfkent@gmail.com

mailto:clementfkent@gmail.com

the Apply family
applies functions to parts of data

• array data:
– apply

– tapply aggregate

– outer

• List data:
– lapply and friends:

• sapply, mapply, vapply,

• replicate

• rapply, dendrapply

• eapply

Let’s get some data

• Temps – a matrix of temperatures no various
dates (rows) at different stations (columns)

Island Barrie YYZ

winter -4 -12 -5

spring 8 6 9

summer 29 28 31

fall 19 15 20

find the mean temperatures in:

• each season, across sites;

• each site, across seasons.

• Now, find the median temperatures

apply applies a function
to columns or rows

• apply(Temps,1,mean) # row means

• apply(Temps,2,mean) # column means

• apply(Temps,1,median) # row medians

• apply(Temps,2,sd) # col. standard deviations

apply applies your function
to columns or rows

• apply(Temps,2,function(x){median(x)-
mean(x)})

• apply(Temps,2,function(x){x-mean(x)})

– # what happens here?

apply applies a function
to arrays as well

apply(TempsYrly,1,median) #

apply(TempsYrly,2,median) #

apply(TempsYrly,3,median) #

robust scaling

robustScale<-function(x){(x-median(x)/(IQR(x)/2)}

like scale, but uses median instead of mean, and

Inter-quartile Range instead of sd

r<-rnbinom(n=10000,mu=10,size=2) # nice skewed data

hist(r)

histr<-function(x,brks=50,...){hist(x,breaks=brks,col="black",...)}

histr(r) # nice convenience function to have

histr(scale(r),brks=20) # compare with:

histr(robustScale(r) ,brks=20,xlab=“number in quadrat”)

some serious data

• a 20 million year BP series of CO2 and Northern
hemisphere mean temperatures
– Graversen RG, Drijfhout S, Hazeleger W, van de Wal R,

Bintanja R, Helsen M. Greenland’s contribution to global
sea-level rise by the end of the 21st century. Climate
dynamics. 2011;37(7-8):1427-42.

r<-CO2_NHtemp[CO2_NHtemp$time> -2e3,] # last 2 Myrs
with(r,plot(dTNH,CO2ppm))
with(r,plot(time,CO2ppm))
t10K<-floor(r$time/10) # 10,000 year lumps
z<-apply(r[,2:3],2,robustScale); z<-aggregate(z, by=list(t10K=t10K),median)
plot(z$t10K,CO2ppm,ty="l",lty=1,col="blue",xlab="time BP (10,000 year
units)",ylab="robust z-score")
lines(z$t10K,z$dTNH,col="red")

mapply – apply a function with
multiple arguments

• result <- mapply(function, arg1, arg2…argN,moreArgs)

• mapply(rep, 1:4, 4:1)

• mapply(rep, times = 1:4, x = 4:1)

• netPP<-
function(temp,CO2,alpha=0,beta=1){temp*beta*(CO2-alpha)}

• x=mapply(netPP,z$dTNH,z$CO2ppm);
plot(x,ty="l",xlab="time",ylab="NPP")

• x=mapply(netPP,z$dTNH,z$CO2ppm,alpha=-2,beta=.5);
lines(x,col="red")

with multi-dimensional arrays
more fun is possible

apply(TempsYrly,1:2,median) # median how?

apply(TempsYrly,2:3,median) # when?

apply(TempsYrly,c(1,3),median) # where?

a bit of visualization

overYears<-apply(TempsYrly,c(1,2),median)

cols<- rev(rainbow(24, start = 0, end = .6))

heatmap(overYears ,col=cols,

Rowv=NA,Colv=NA,scale="none”,cexCol=1.2)

Is
la

n
d

B
a

rr
ie

Y
Y

Z

winter

spring

summer

fall

tapply aggregate

groups <- as.factor(rbinom(32, n = 16, prob =
0.4))

> tapply(groups, groups, length) #- is almost the
same as

7 10 11 12 13 14 15 16

1 2 1 2 2 1 2 5

> tabulate(groups)

[1] 1 2 1 2 2 1 2 5

tapply aggregate

• tapply(data, factors, FUN = myFunction)

• use when we want to group the data by one
or more factors before summarizing each
group using

• each group is all the data having a specific
combination of values of each of the factors
supplied

• use with “ragged” data that doesn’t fit easily
in an array

tapply – a simple example

fishSites
"Smoke" "Cache" "Cache" "2Rivers" "Rock" "Smoke"

"Cache" "Opeongo" "Opeongo" "Canoe" "Smoke" "Opeongo"

"Cedar" "Grand" "Rock" "Grand" "Smoke" "Sec"

"Grand" "Grand" "Rock" "Mud" "Opeongo" "2Rivers"

"Opeongo" "Canoe" "Mud" "Mud" "Mud" "Opeongo"

tapply(fishSites,fishSites,length)
2Rivers Cache Canoe Cedar Grand Mud Opeongo Rock Sec Smoke

2 3 2 1 4 4 6 3 1 4

fishSites is both data, and the factor we group on

aggregate instead of tapply

• result<- aggregate(data,by=listOfFactors,
function)

• ft1<-tapply(fishCatch$temp,fishCatch[,1:2],mean)

• ft2<-aggregate(fishCatch$temp, by=list(where=fishCatch $sites,
when=fishCatch$season), mean)

• ft3<-aggregate(fishCatch$temp, by=fishCatch[,1:2], mean)

• ft4<-aggregate(fishCatch$temp, by=list(when=fishCatch $season,
where=fishCatch$sites), mean)

• ft5<-aggregate(fishCatch$temp, by=fishCatch[,2:1], mean)

• ft6<-aggregate(fishCatch[,3:4], by=fishCatch[,2:1], mean)

• Compare these. Where are they the same, where different?

What is N for tapply/aggregated data?

• ft6n<-aggregate(fishCatch[,3:4], by=fishCatch[,2:1], length)

• ft6nt<-tapply(fishCatch[,3], fishCatch[,2:1], length)

• How are these different? where might you use this?

going to “outer” space

• outer is very cool. Make yourself into an R
astronaut by using outer space…

• result<-outer(x,y,myFunction)
– returns array with as many rows as x, columns as y, and

result[i,j]==myFunction(x[i],y[j])

– classic example: x=1:9; multTable=outer(x,x,”*”)

– note if using a built-in R function such as +-*/ etc, put it in quotes

– if using a named function (Alex, where are you????) no quotes

what is the closest point in
outer space?

• you measured many environmental variables
at lots of sampling points.

• Each sampling point has an x and y coordinate
(in meters, km, 10th century king’s feet, etc)

• You’ve got a dataframe EnvDat with columns
x, y, and N more columns for your N
environmental measures (e.g. noon temp, soil
carbon, % canopy cover)

myXY is a dataframe of points within the experimental site

Let’s find closest 3 points in EnvDat to each X,Y point.
d<-sqrt(outer(myXY$x,EnvDat$x,”-”)^2 + outer(myXY$y,EnvDat$y,”-”)^2)

s<-apply(d,1,order)[,1;3]

not shown: we could now interpolate weighted noon temp, soil
carbon, etc from these 3 nearest points in EnvDat

lists are for ragged data

• matrices, arrays all need same number of
entries in rows, columns.

• in the real world you may have different
numbers of observations at different sites

• lists are for you!

• the ith member of a list L is L[[i]]

• look at variable sites3

sapply applies functions within lists,
then simplifies the result

• sapply(sites3,mean)

• sapply(sites3,sd)

• sapply(sites3,function(x){c(m=mean(x),s=sd(x))}

• sapply(sites3,quantile,seq(.2,.8,.1))

lapply doesn’t simplify

• lapply(sites3,mean)

• lapply(sites3,robustScale)

replicate for simulation

• replicate(n_times, expression)

• replicate(3,rnorm(2,0,1))

• replicate(3,rnorm(sample(10,1),0,1))

for another time:
recursive applies

• rapply recursively applies a function down the
levels of a list, most often one representing
something like a tree or graph structure

• dendryapply does this to dendrogram objects
produced by various clustering methods

THANKS!

a less elementary example, Watson!

• you have latitude of your observation sites
and the date. How long was the day?

• in Wikipedia, you find the sunrise equation:

– cos(w) = -tan(L) * tan(D)

• instantly, you achieve enlightenment, quit
graduate school, and start your own cult

• or perhaps you actually want to know the day
length, poor unenlightened you!

the Outer space solution

• tanL = tan(LatToR(lat))

• tanD = tan(SunDecl(day,lat))

• cosw = - outer(tanL,tanD, “*”)

• hours = 2 * RadToHour(arccos(cosw))

• check it: dataframe DaySites has lat, day of
year

the R sunrise equation

• L is Latitude in radians (Alex, how do we
convert from Google Maps latitudes to
radians? help!!!)

• D is the sun declination (how much is the sun
at noon above where is would be on March
21, in radians…help!!!)

• w is the “hour angle” in radians

– daylength (hours) = 2 * w / 15

solving the sunrise equation

• you and Alex make a function LatToR(lat) to
convert latitude in degrees (like 45.1278) to
radians

• you and Alex make another function SunDecl(day,
lat) to convert day of the year (measured from
1=Jan 1) and latitude into sun declination

• you and Alex make a function to convert back
from radians into hours….RadToHour(rads)

• now, you are ready to rock and roll!

